Orbital Dynamic Admittance and Earth Shadow
نویسندگان
چکیده
منابع مشابه
Orbital Feshbach Resonance in Alkali-Earth Atoms.
For a mixture of alkali-earth atomic gas in the long-lived excited state ^{3}P_{0} and the ground state ^{1}S_{0}, in addition to nuclear spin, another "orbital" index is introduced to distinguish these two internal states. In this Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and nuclear spin quantum numbers. Two essential ingredients are t...
متن کاملDebiased Orbital and Absolute Magnitude Distributionof the Near-Earth Objects
The orbital and absolute magnitude distribution of the near-Earth objects (NEOs) is difficult to compute, partly because only a modest fraction of the entire NEO population has been discovered so far, but also because the known NEOs are biased by complicated observational selection effects. To circumvent these problems, we created a model NEO population which was fit to known NEOs discovered or...
متن کاملPossibility of collision between co-orbital asteroids and the Earth
Considering hypothetical co-orbital asteroids with the Earth, Tatum (1997) presented a study about the necessary radial distance in order to produce collision. He adopted an analysis considering a composition of circular two-body systems, Sun-Earth and Sun-Asteroid. He found that asteroids with radial positions between 0.9943 and 1.0057 AU would necessarily collide with the Earth. In the presen...
متن کاملContrasting responses to orbital precession on Titan and Earth
Earth and Titan exhibit contrasting atmospheric responses to orbital precession. On Earth, most (water) precipitation falls in low latitudes, and precipitation is enhanced in a hemisphere when perihelion occurs in that hemisphere’s summer. On Titan, most (methane) precipitation falls in high latitudes, and precipitation is enhanced in a hemisphere when aphelion occurs in that hemisphere’s summe...
متن کاملAnalysing the Orbital Movement and Trajectory of LEO (Low Earth Orbit) Satellite Relative to Earth Rotation
Next generation of wireless Internet scenarios include LEOs (Low Earth Orbit Satellites). Lower altitudes of LEO constellations could allow global coverage while offering: low end-to-end propagation delay, low power consumption, and effective frequency usage both for the users and the satellite network. LEOs rotate asynchronously to the earth rotation. Fast movement of LEOs makes it necessary t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Astronautical Sciences
سال: 2019
ISSN: 0021-9142,2195-0571
DOI: 10.1007/s40295-018-00144-1